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1. Basic methods for optimization 
In elementary calculus, problems of optimization are solved by determination of the stationary 
points of a real function of one variable i.e. the values, where the function have local max or min. 
If the function related to the problem is y= f(x), then the stationary points are determined by 
solving the equation, which comes about, when setting the derivative of f(x) to zero.  
   
(1.1)  0)(' xf  
 
There is a local max in the point in x0, if 0)(' 0 xf  and the variation of signature of )(' xf  around 

x0 is ( + , 0 , - ), that is,  f(x) is increasing, flat and decreasing.  
The nature of the stationary point can however, also be examined by examining )('' xf .  

If 0)('' 0 xf , then there is a max x0, since it means that )(' xf is decreasing and crosses the x-axis 

from the positive side to the negative side, i.e. the variation of )(' xf  is (+, 0, - ) around x0. 
Similarly, there is a local min in x0 if: 
 
(1.2)  f ’(x0) = 0     and      f ’’(x0) >0 
 
In some connections it is advantageous to rewrite the definition of differentiability.  
 
If f is differentiable in x0 , then according to the usual definition:  
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Introducing a so called epsilon function ε(h), defined by two properties:  
 

ε(h) is continuous, and 00)(  hforh .  
 
The differentiability of a real function, can then be reformulated as: 
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(1.4) hhhxfxfhxfhf )()(')()()( 000   

 
The last term goes to zero at a higher order than h, so in many cases, we may discard it when h is 
small. This lead to the formulation: 
 
(1.5) hxfxfhxfhf )(')()()( 000          when h is small. 

 
The expression )(hf  is denoted the variation of f(x) around x0. 
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If f has an extremum (max/min) i x0 , then  f’(x0) = 0, and consequently the variation of f in x0 
equals zero. 
This formulation we shall apply in the following. 

1.1 Partial derivatives 
For functions of two or more variables e.g. ),( yxfz  one can calculate the so called partial 
derivatives, where you just differentiate the expression (in the usual manner) after one variable, 
treating the other variables as constants. Partial derivatives are written with a curved d as  . 
The two partial derivatives of ),( yxfz   are written: 
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Correspondingly one may write the four second derivatives 
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It is an important mathematical theorem that: 
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1.9 Example 
 
If  f(x,y) = xy2, then one gets directly:   
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The differential is defined in the same manner, as for a function of one variable: 
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The condition for a function to have an extremum (max/min) in some point x0 , can then be 
expressed, as having zero variation in that point. 
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So a function has an extremum, if and only if all the partial derivatives vanish at that point.  
This applies also to functions of more than two variables. 
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Without proof, we mention, that one can decide whether a stationary point is a max or a min, by 
establishing the Jacoby determinant. If the determinant is negative f(x) has a maximum, and if it is 
positive it is a minimum.  
For a function of two variables, the Jacoby determinant is evaluated as shown below. 
The generalization to more than two variables is straightforward. 
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2. The calculus of variations 
A real function f of several variables f (x1, x2, x3,..,xn ), is a mapping of Rn into R, if there for every 
x =( x1, x2, x3,…. xn ) is assigned one, and only one real number y= f (x1, x2, x3,..,xn ). 
 
A functional is a mapping, if there for every subset of functions (of one or more variables), is 
assigned one real number. 
 
The definite integral, defined for integrable functions, is an example of a functional.  
In elementary calculus, the functional I is written with the integral symbol.   
 

(2.1)  
b

a
dxxffI )()(  

 
The discipline of mathematics that deals with functionals is called functional analysis. 
 
Note: 
A mapping, which to a class of functions assigns one and only one function, is called an operator.  

A familiar example of an operator is the differential operator 
dx

d , since, for every differentiable function is assigned its 

differential quotient. 

)()(' xf
dx

d
xf   

 
Other examples are of course any differential equation. 
 
The calculus of variation deals with the task of finding the stationary points (max/min) of a 
functional. That is, to determine the function, where the functional has a max or min. 
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A soap membrane. 
A classical example is to determine the shape of a rotational symmetric soap membrane i.e. the 
curve of intersecting with the x-y plane, making the surface of the membrane becomes least.  
 
 

In these kinds of problems, there are usually 
attached some boundary conditions that the 
solution must fulfil.  
In the case of soap membrane, the revolution 
membrane must have circular intersection in both 
ends with radii ra and rb , so any solution  y = f(x) 
must conform to: 
 
                        f(a) = ra and  f(b) = rb 
 
To establish an functional expression for the 
intersecting curve of the membrane, we shall look 
at a small strip with thickness dx at x. 

 
 
The circumference of the strip is 2πf(x) = 2πy. The width of the strip is then (See the figure) 

 

 (2.3) dxydxxfdx
dx

dy
dydxds 22222 '1)('1)(1)()(   

 
The contribution from the infinitesimal strip to the area of the membrane is then: 
 

 dxxfxfdO 2)('1)(2          or     dxyydO 2'12    

 
The overall surface can then be found by integrating. 
 

 (2.4)   
b

a

dxyyyO 2'12)(   

 
It is quite intentional that we write y instead of )(xf , because y is considered an independent 
variable i.e. the function we want to determine. The task of the calculus of variation is, among all 
differentiable function to find the function )(xfy  , which minimizes the integral. 
 
We shall eventually present the solution to the minimum of the soap membrane, which is one of 
the few problems that actually have an analytic solution.  
But first we shall introduce some consideration of a more general nature, namely to develop 
methods to determine the stationary points of a functional.  
 
The general solution is due to Leonard Euler, and his theory is called Calculus of Variations. 
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The Calculus of Variations is one of the strongest and most applicable tools in mathematics, 
especially when applied to physics, where the equations of motion – including the he general 
theory of relativity – can be derived from the principle of least time, applying the Euler-Lagrange 
formalism.  
We shall initiate from what the mathematicians somewhat boldly have named: The simplest 
problem. 

2.1 The simplest problem 
We consider a function )',,( yyxFF  , which is the integrand in the functional, and )(xfy  is a 
function that is a stationary point of the functional, the function we want to determine. 
  
More specifically, we want to establish the stationary points (max/min) of the functional. 
 

(2.5)  
b

a
dxxyyFyI ),,'()(  

  
The reason for this choice of functional is that many problems from the physical and mathematical 
world can be reduced to this form, of which we have already given an example with the 
minimization of rotational soap membranes. 
 
We now consider a small variation δy to the function y. As explained above, the functional 

)( yI has a stationary point (max/min) if the variation of )( yI  vanishes. 
 
(2.6)  0)()(  yIyyII   
 
The very clever trick in the procedure (due to Euler) is the substitution of determining a vanishing 
variation of a functional to determine a simple stationary point of a real function of one variable.  
 
Accordingly, if δy is a arbitrary variation and ε is a small real number, then ε·δy will be a small 
variation.  
The advantage is of course, that we can view εδy as a real function of the variable ε and apply the 
elementary methods from differential calculus, where a function )(F  has a stationary point if 

0)(' F . Applying this to the functional I(ε), it means that the variation vanishes if I’(ε) = 0. 
 
Figure showing possible paths from P to Q                 

Formulated more precisely: If 
    

I(ε) = I(y + ε δy) 
  

has a stationary point at y, then I(ε) must have a stationary 
point at 0, so that I’(0) = 0 for all variations δy, or 
 

   (2.7)  0
0


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dI
 independent of y  

 
We shall now demonstrate, that (2.7) leads to a differential equation that y must satisfy. 
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The calculations that lead to the result are, however not entirely trivial. One should bear in mind 
that δy is an arbitrary real function, and should be treated as such, contrary to an independent 
variable as Δx. The variation of I(y) is then written: 
                  

(2.7)   
b

a
dxxyyyyFI ),,''()(   

 
 Then it follows from differentiation with respect to ε. 
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To proceed, we shall make the following reasonable assumption that the variation of δy, vanishes 
at a and b, the end points of the interval, so that δy(a) = δy(b) = 0.  
Regarding the first term in the integral, we make a partial integration, according to the formula. 
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Because of the condition δy(a) = δy(b) = 0, the first term on the right side of the equation 
vanishes, and after inserting the second term in (2.9), we obtain. 
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If the integral must vanish for all variations δy, then the integrand must also vanish, leading to a 
differential equation of second order in y, known as the Euler-Lagrange equation. 
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In general, this second order differential equation can not be solved, but we shall look at two 
simplifying modifications, which makes it is possible to obtain solutions in some cases.  
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1. F does not depend explicitly of y. (This happens only in rare cases) 
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Which reduces the equation to: 
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2.   F does not depend explicitly of x. Which occur in many known classical problems.  
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First we multiply the Euler-Lagrange equation 0
'









y

F

y

F

dx

d
 by y’ and subsequently we add and 

subtract the term 
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, the terms in he last parenthesis are seen to be equal to 
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first parenthesis are seen to be equal to   
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The Euler-Lagrange equation can then be rewritten in the compact form.  
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What we have obtained is to convert a second order differential equation to a first order equation 
that in some cases can be solved.  
Since it usually is this form that is applied, it is often referred to as the Euler-Lagrange equation. 
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3.1 Least surface for a rotational soap membrane 
We demonstrated earlier that the surface that is formed, when a function y = f(x) is rotated around 
the x- axis is given by the expression (functional O(y)) 
 

 (3.1)   
b

a

dxyyyO 2'12)(   

In this case, we therefore have 2'1)','( yyxyyF  , and we notice that F does not explicitly 

depend on x. For this reason we can use the simplified version of the Euler-Lagrange equation. 
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C is a constant, which is to be determined by the boundary conditions.  
By inserting  F and performing the differentiations, we find: 
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Multiplying by 2'1 y  and reducing, we arrive at the equation. 

 

(3.4) 2222 '1'1)'1(' yCyyCyyyy   

 
This last equation is a first order differential equation. In principle it can be solved by separation of 
the variables, and integrating, but the form of the square root invites us to use a substitution, 
applying the hyperbolic functions:    

 
cosh x = ½(ex + e-x)   and   sinh x = ½(ex -  e-x) 

 
It is straightforward to verify that 
 
(3.5) (cosh x)’ = sinh x  og  (sinh x)’ = cosh x    and that    cosh2 x – sinh2 x = 1 
 
To get rid of the square root, we put:  

)sinh('
0

0

y

xx
y


 , and it then follows that: k

y

xx
yy 


 )cosh(

0

0
0 . 

When inserted in 2'1 yCy  it gives: 
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(3.7) 
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From the last equation, it follows that  

k
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is indeed a solution, if and only if  
 

k = 0 and C = -y0 .  
 

So the solution to the least surface, having 
the boundary conditions:  
 
           f(a) = ra  and  f(b) = rb  
is 

    (3.8) )cosh(
0

0
0 y

xx
yy


  

Thus, the curve of intersection with the x-y 
plane, will be a hyperbolic cosine.  
The constants x0 and y0  are determined by 
the boundary conditions e.g. by the radii in 
the end faces. 

    To the left, figure (3.9) is shown a  
    (beautiful) computer generated drawing of a 
    rotational hyperbolic soap membrane 

surface.    

3.2 The suspended chain 
The problem is in its simplicity to determine the curve 
that a chain forms, when it is suspended in two points.  
The preliminary assumptions require only a minimum 
knowledge of physics. 
It is an established fact in physics that a mechanical 
system, with one or more degrees of freedom i.e. 
possibility to move freely in one or more directions, will 
always tend to a position with the lowest potential energy.   
Because of the inevitable friction, the system will finally 
find rest in that position. 
 

We shall therefore initiate by setting up an expression for the potential energy of the chain 
suspended in the two points ))(,())(,( bfbandafa , where the chain has a form described by the 
function y = f(x).  

 

 



 Calculus of Variations 10 
 Applied to known and unknown problems 

The mass of the chain per unit length is denoted by µ.  
As described earlier, the length of an infinitesimal piece ds of the curve, corresponding to the 
increment dx is given by the expression: 
  

(3,10) dxydx
dx

dy
dydxds 2222 '1)(1     så   dxyds 2'1  

 
The potential energy dE of a mass placed at ds is, according to the formula Epot =mgh. 
 

(3.11)  dxygygydsdE 2'1   

 
The overall potential energy of the chain is therefore. 
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The problem of determining the form of the chain, having the lowest potential energy, is therefore 
a variation problem with: 
 

(3.13)  dxyyxyyF 2'1),,'(   

 
The integrand is, however the same as in the previous problem, (apart from a constant factor), and 
so is the solution, which we just copy. 
  

(3.14)  






 


0

0
0 cosh

y

xx
yy  

 
The curve that a chain suspended in to points forms turns out to be a hyperbolic cosine.  

3.3 The Brachistochrone 
This is probably the most notorious problem first proposed by Johan Bernoulli, and solved by 
Euler in his invention of the calculus of variations. 
 

The problem is to determine the trajectory a particle will 
chose, if it without friction should move from a higher 
position A to a lower position B in the shortest possible 
time. 
Instantaneously, one might think that the shortest path 
(being a straight line) also would be the fastest path, but 
this is not necessarily the case since, if the trajectory is 
steeper in the beginning, the particle will gain more speed 
to traverse the rest of the path.  
The solution to the problem is in fact rather surprising. 

 
From kinematics, we know, that ds = vdt (distance = velocity x time) 
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At the same time dx
v

y
dtdxyds

2
2 '1
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
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Conservation of energy in a free fall in the gravitational field gives: ½mv2 = mgy gyv 2    

When inserted in the expression for dt, it gives:  
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Thus the exercise is then to determine the minimum value of the functional: 
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Which is a variation problem with the function: 
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Since F does not depend explicitly on x, we shall apply the same version of the Euler-Lagrange 

equation: CF
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2

'1

)'1(2

'2
'   

 

Multiplying (3.19)  by )'1( 2yy    gives:  )'1()'1(' 222 yyCyy  , and after some reduction 

and squaring the equation, it leaves us with the non linear first order differential equation: 
 
(3.20)  cyy  )'1( 2   (Where c is a new constant) 
 
Since (tan x)’ = 1 + tan2x , it is tempting to try with the substitution. y’= tan θ,  
 

Then   1+ y’2 = 1+ tan2 θ =
2cos

1
.  

 
When inserting this, the equation becomes: 
 

(3.21) 
)2cos1(

2
cos

'1

)'1(

2
2

2

 






cc
y

c
y

cyy
 

 
The substitution  y’= tan θ, however only gives one half the parametric of the trajectory.  
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To obtain )(xx  , we shall make the following rewriting: 
 

(3.22) )2cos1(cos2
tan

cossin2
2sin

'
2 





 ccc

y

c

d

dy

dy

dx

d

dx
 

 
Arriving at the sought solution. 
 

(3.23)  )2cos1(
2

)2sin2(
2 0   cyandx
c

x  

 
Introducing  A=-½c and  t = ½θ , we can write it in a more common form.  
  
(3.24) )cos1()sin( 0 tAyandxttAx   

 
This we recognize as the parametric of a cycloid, which is called the Brachistochrone. 
 
The mathematical curve of the Brachistochrone is sketched below.  
It is the trajectory that a fixed point on a circle rolling on the x-axis follows.  
 
If we choose x0 = A(½π +1), then a point , which at t = ½π , move until  t = π, will move 
from the position  (x,y) = (0, A)  to (x,y) = (A(π -1), 0). 
 
  
 
 
  
 
 
 
 
 
(3.25)  The parametric for the cycloid 

From the figure above, we see: 

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And the parametric becomes: 














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)(
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Below is shown the graph of the mathematical cycloid, and the graph for the solution to the differential equation  
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4. Extremum with side conditions  
Two of the most famous problems that can be solved only by the Calculus of Variations, are to 
determine the largest area within a closed perimeter and the largest volume within a closed 
surface.  (We know they are a circular disc and a sphere) 
 
To determine the largest volume within a given closed surface area, we initiate by writing the 
expressions for calculating the volume V and the surface area O, for a body which is the result of 
rotating a function y = f(x) 3600 around the x axis. 
 

(4.1)   
b

a

b

a

dxyyOanddxyV 22 '1   

 
The task is then to find the extremum for the volume V under the side condition O = constant. 
This is, however not ”the simplest problem”, but is described as optimization with a side 
condition. In the example stated above, the side condition is that the area of the surface is 
constant. 
Before we enter the calculus of variation with a side condition, we shall introduce the notion of 
Lagrange multipliers, when finding the extremum of a real function of two or more variables. 
More precisely, our aim is to determine extremum for a function z = f(x,y) subject to the side 
condition g(x,y) = c (constant).  
If g(x,y) = c can be solved with respect to y, to give y = h(x), then this can be inserted in z = f(x,y) 
to give:  z = f(x,h(x)), and the extremum of f can be found by traditional analytic methods i.e. 
finding the solution of the equation f’(x,h(x)) = 0 
 
In the majority of cases, however the equation g(x,y) = c cannot be solved analytically with respect 
to y, and we are referred to other analytical methods 
 
If f has extremum in x0 , then the variation of f  around x0 vanishes i.e. the differential of f in x0

 

equals 0 for all variations of dx and dy. 
  

(4.2)  0







 dy
y

f
dx

x

f
df  

 Since dx and dy are independent, we may conclude that 00 







y

f
and

x

f
. 

But if the extremum is subject to a side condition g(x,y) = c, then dx and dy are no longer 
independent, but bound by the relation 
 

(4.3)  0







 dy
y

g
dx

x

g
dg  

 
In general for two linear equations with to unknowns, where the right side are zero 
 

(4.4)  
0

0

22

11




ybxa

ybxa
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We know that the determinant of the system of equations is zero, 01221  babaD  and 
consequently the two pairs of coefficients are proportional to each other. 
This is easily seen since, if we put 12 aa  then it implies 12 bb  .  So (a2,b2) = λ(a1,b1), where λ 
is a constant. 
The set of equations (4.4) are equivalent to the set of equations, fetched from (4.2) and (4.3). 
Provided we replace the coefficients (a1,b1) and (a2,b2) with the partial derivatives of f and g, and x  
with dx , and y with dy.  
 
 

(4.5)  
0

0

















dy
y

g
dx

x

g

dy
y

f
dx

x

f

 

 
Thus we conclude: (There is a tradition of writing – λ instead of λ)   
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














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













y

g

x

g

y

f

x

f

y

g

x

g

y

f

x

f   

 
Or written out 

(4.6)  00 















y

g
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f
og

x

g

x

f   

 
But this signifies precisely that the function f(x,y) + λ g(x,y) has extremun in the point. 
 
We recapitulate the results. The function f (x,y) has extremum in a point, with the side condition   
g(x,y) = c, if and only if the function  f(x,y) + λg(x,y) has extremum at that point. 
 
The constant λ is to be determined from the boundary conditions of the problem 
 
λ  is denoted a Lagrange multiplier. The theory for Lagrange multipliers can easily be extended to 
functions of more than two variables, since there is always the same number of Lagrange 
multipliers, as there are side conditions.  

4.1 Largest area within a given perimeter 
One problem that inherits to ancient time, is the question to determine the largest area within a 
fixed perimeter. Already the Greek mathematicians knew that the answer is a circle with radius r 
and perimeter 2πr. A formal proof has, however not been given before discovery of the variation 
calculus.   
We consider an area confined by a function y = f(x) and the x-axis. The function is defined in an 
interval [a ,b] , where 0)()(  bfaf .  
Since the part of the perimeter on the x-axis with length b – a, which is at the x-axis, is the same 
for all functions, we shall leave it out of the calculations  
The length ds of the piece of the function graph that correspond to dx is: 
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(4.7) dxydx
dx

dy
dydxds 2222 '1)(1   , so   dxyds 2'1  

 
The length sab of the graph y= f(x) , and the area A confined by the graph of f(x) and the x-axis are: 
 

 (4.8)  
b

a

ab dxys 2'1      and         
b

a

b

a

ydxdxxfA )(   

 
We seek extremum for the area A under the side condition sab = konstant. The Lagrange function 
F(y’, y, x) then becomes: 
 

(4.9)  2'1),,'( yyxyyF    

 
As F does not depend explicitly on x, we apply the reduced form of the Euler Lagrange equations.   
 

(4.10)   CF
y

F
y 



'
'  

 
And doing the differentiations gives: 
 

(4.11)  Cyy
y

y
y 


)'1(

'1

'
' 2

2


  

 

Multiplying by 2'1 y  gives: 

 

(4.12)  2222 '1)'1('1' yCyyyy    

 
After some reduction: 
 

(4.13)   2'1)( yCy  

 
This equation can not be solved for all values of λ and C. So we restrict ourselves showing that the 
solution is part of an arc of a circle.  
We know that a first order differential equation has one and only one solution, where f(x0) = y0. 
So, if we find a solution, it is the solution.  

We therefore try with a circle: 22222 xryryx         (in the upper half plane) 
 

(4.14)  











 

2

22

22 1)(
xr

x
Cxr  
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  



 22

222
22 )(

xr

xxr
Cxr  

 

(4.15)  



22

22 )(
xr

r
Cxr  

 
From (4.15) we see that the circle arc is actually a solution, provided C =0 and -λ = r.  
Thus we have given an analytic answer to the question of the largest area within a perimeter of 
fixed length. 

4.2 Largest volume for a given surface area 
We shall now return to the problem of determining the largest volume, within a given surface. 
The volume and surface area are given by the integrals. 
 

(4.16)   kdxyyyOdxyyV
b

a

b

a

  22 '12)()(   

 
When using the theory of extremum with a side condition, the problem can be treated, by applying 
the Lagrange multipliers.  
This corresponds to seek extremum for the functional: )()()( yOyVyI   
 

(4.17)  
b

a

b

a

b

a

b

a
dxxyyFdxyyydxyydxyyI ),,'()'12('12)( 2222   

 

Where  22 '12),,'( yyyxyyF    

 
F(y’,y ,x)  does not depend explicitly on x, so we can use the simplified form of the Euler-
Lagrange equations.  

(4.18)  CF
y

F
y 



'
'  

 
Inserting the expression for F and, carrying out the differentiations, we get: 
 

(4.19)  Cyyy
y

yy
y 


)'12(

'1

'2
' 22

2


 

 

Multiplying by  2'1 y  followed by some reduction, we have  

 

(4.20)  02'1)( 22  yyCy   

 
Although this differential equation can in principle be solved by separating the variables, it can not 
be carried out, at least not for all values of C and λ. 
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Our presumption is however, that the solution is a sphere, so we make an attempt with the equation 
of a sphere. 

x2 + y2 = r2  22 xry   
 

By inserting in (4.11) we are faced with the equation 
  

(4.21)  021)( 22
22

2
22 


 xr

xr

x
Cxr   

 

Multiplying by 22 xr   and reduction we find: 
 

(4.22)  0)(2)( 22222  xrrCxr   
 

From which we conclude that 22 xry   is a solution, if and only if   C=0  and  λ=-½r 
 
We have thus proved that the sphere is the (rotational symmetric) form that has the largest volume 
for a given surface. 

4.3 On the shape of Wine barrels 
If we relax on the claim f(a) = f(b) = 0, the rotational body is no longer a sphere but a barrel with 
radii f(a) = f(b) = r, at the end faces. This will correspond to the case C≠ 0.  
However, as mentioned above, the differential equation: 
 

 (4.23)   02'1)( 22  yyCy    

 
does not have a solution, which can be expressed by known real functions. 
Solving the equation numerically, however it turns out that the solution reveals a distinct shape of 
a wine barrel. 
  
Wine barrels have had the familiar shape for many hundred years. Designing a barrel is a 
compromise between two regards. One is having the largest volume for the least materials.  
We know that is the spherical container. On the other hand, spherical containers are certainly not 
the optimal solution, if the intention is to stack as many barrels as possible in a wine cellar 
Furthermore spherical containers are not particular stable. For this reason the most obvious choice 
would be a cylindrical container, with a circular cross section. 
 
The compromise has been the traditional wine barrel, and it has been verified, that the shape of the 
barrels that have been used for centuries in Europe, are in fact very close to what you obtain from 
the calculus of variations. 
 
In creating the computer generated solution, we have assumed that the solution is symmetric about 
the y axis, and furthermore that: The barrel has end points at –a and a, and is symmetric around the 
y-axis. 

  y'(0) = 0,   y(0) = R,   y'(a) = α,   y(a) = r. 
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One may choose different values of R (the maximum radius of the barrel) and r (the radii of the 
end faces), but we shall only show one examples: 
When these values are inserted in the differential equation, we get two equations which fix λ og C. 
 

(4.24) 022  RCR        and       021)( 22  rCr     
 
With an appropriate choice of andrR,  these equation can be solved, and inserted in the 
differential equation (4.12) it yields the amazing shape of (an intersection with the x – y plane) of a  
wine barrel. 
 
 
 
 
 
 

 

 

 
 
 
 

 
 
 
 
 

 

4.4 The shape of a hanging water drop 
Soap bubbles, water drops in air, drops of quicksilver are all held together by the surface tension.  
 
The surface tension for a certain liquid as water, soap water, quick silver is defined as the force 
acting perpendicular on a (mathematical) cut, divided by the length of the cut 
 
In contrast to the rules for elastic materials, the surface tension does not depend of the size of the 
surface. 
From this follows immediately, that the potential energy, caused by the surface tension is directly 
proportional to the area of the surface. 
 
Since a physical system will always to seek to a state of minimum potential energy, it then follows 
that drops of water in a free fall in air will have a spherical shape, since it gives the least surface 
for a given volume. 
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Quite differently it relates to a drop of water, which hangs on a leaf or a water tub, or a quick silver 
drop lying on plane underlay. Here the potential energy consist namely on two contributions. 
 

1. The potential energy from the surface tension, which is least, when the drop has a spherical 
shape 

2. The gravitational potential energy: Epot = mgh, which is least, when the drop is smeared out 
over the largest area. 

 
If the mass gets too large, the surface tension is not able to told the drop together, in accordance 
with the experience, that one does not observe dew drops larger than a couple of millimeters, and 
likewise in laboratories in schools (before 1980), the observation that, when quick silver drops 
assemble, they do not form bigger and bigger bullets, but splash out on the underlay.  
 
A liquid drop with surface S, has as a consequence of the surface tension a potential energy     
Epot= γS, where γ is a material constant.   
 

 γ water = 76 mN/m,   γ Hg = 465 mN/m, while γ alcohol =22 mN/m.  
 
The value for alcohol explains, why you seldom observe drops of alcohol. 
 
The shape of water or dew drops is an obvious challenge for the calculus of variation, since the 
problem may be stated as finding the minimum of Epot(surface tension) + Epot(gravity) 
 
Unfortunately, there is no analytical solution to the problem, but the numerical solution reveals 
what a hanging water drop, of various size looks like. This can then be compared to enlarged 
photos of water drops.  
At the same time the resulting differential equation, can be used to estimate the maximum size for 
hanging water drops.      
 
We shall first establish the formulas for the surface S of a rotational symmetric body (around the y 
axis, since a water drop is rotational symmetric around a vertical axis), and for the potential energy  
E (caused by the surface tension) of a circular disc, with thickness dy, located in the height y. 
 

(4.25) dxyxdx
dx

dy
xdydxxdS 2

2
22 '12122 






   

 

(4.26) dxyxdSSdE tensionpot
2'12)(    

 

dxyxdx
dx

dy
xdyxdV '222     

 
(4.27) dxyyxggydVVdE gravitypot ')()( 2   

 
Then we use the Euler-Lagrange equations to seek extremum for the functional: 
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(4.28)  





r

r

r

r

r

r
dxyygxyxdxyyxgdxyx )''12(''12 2222   

 
Adding the side condition: 

(4.29)  0
2 ' Vdxyx

r

r
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

  

 
We leave out the factor π, and our F(y’,y, x) is then expressed by the Lagrange multiplier λ. 
 

(4.30)   '''12),,'( 222 yxyygxyxxyyF    

 
In this case F does explicitly depend on x, and we are bound to use the general form of the Euler – 
Lagrange equations, which is a second order differential equation in y. 
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First we calculate the partial derivatives:  
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And next we calculate  the total derivative 
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Plugging them in the Eulers-Lagrange equations followed by some reduction, we have: 
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Finally we isolate y’’: 
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Even for the experienced mathematician the prospect of finding an analytical solution to (4.35) is 
probably nil. 
If we want to create a numerical solution, which initiate in (0,0), we must remove the minus sign, 
since otherwise the numerical solution will turn downwards in the negative half plane of y. 
 
It is not so easy to comment on the value of λ. Below is shown solutions with  λ = 50, λ = 100 and 
λ = 500. The biggest drop has λ = 50. 
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Doing the numerical solution is not without obstacles however, since the shape has two vertical 
tangents (where y’ is undefined), and the expression (4.24) is undefined for x = 0.  
We are therefore referred to a partition of the solution into four pieces, avoiding the end points, 
what also appears from the solutions shown below.  
 
The numerical solutions show three water drops having widths 0.35 mm, 1.5 mm and 2.3 mm. The 
largest drop has a length of 8 mm. 
If you do numerical experiments with larger drops, you will find no solution for the upper part of 
the drop. 
 
Looking at the differential equation, one may also understand, why there is an upper limit for the 
size of the drop.  
If we consider a point (a,b), where the curve of intersection goes from being convex to being 
concave , the condition must be that y’’ < 0 for y > b .  
The result is the inequality: 
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The function 
2'1

'
)'(

y

y
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
  has its set of values in the interval ]-1, 1[ ,  

so the condition can be expressed as: 
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


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


 1 .  

If we insert γ = 76 dyn/cm,  and  ρg = 982 dyn/cm3,we obtain the inequality  b
a

982
76

 .  

If we estimate b = ½a, then we can calculate for which values of a 0491
76

 a
a

, and we find 

that a <0,4 cm. The estimate is then that the width of a drop has a maximum of 4 mm, which is in 
perfect agreement, when trying to solve the differential equation numerically 
Choosing an estimate ab 3

1  we find a maximum width of 0,5 cm. 

 
Below is shown vertical cross sections of water drops corresponding to widths 0.35 mm, 1.5 mm 
and 2.3 mm. The largest drop has a length of 8 mm. 
 
 
 
 
 
 
 
 
 
 



 Calculus of Variations 22 
 Applied to known and unknown problems 

Water drop width 0.35 mm   Water drop width 1.5 mm 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Water drop width 2.3 mm 
 
 
 
 
     
    Photo taken from a water drop.  

Notice the flagrant resemblance, with 
 the computer generated solutions  

 
 
 
     
 
 
 
 
 
 
 
       
  
     
     

 

  

 


